If $(3,2,5)$ is a paint on the outface $F(x, y, z)=0$ and $\nabla F(3,2,5)=\langle 1,0,-7\rangle$, how can me characterize the vectors parallel to the tragent plane of the surface er $(3,2,5)$?

Rok the tangent pane in question is

$$
\begin{gathered}
\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \\
\text { a norma } l_{\text {rec }} \quad t_{\text {point an plane }} \\
\langle 1,0,-7\rangle \cdot\langle x-3, y-2, z-5\rangle=0 \\
(x-3)-7(z-5)=0 .
\end{gathered}
$$

To check if \vec{u} (som vac.) $F(x, y, z)=0$ is parallel to ne need to check

$$
\vec{u} \cdot \nabla F=0 .
$$

$$
\text { eq. } \begin{aligned}
\langle 14,-6,2\rangle \cdot\langle 1,0,-7\rangle & =14+0-14 \\
& =0
\end{aligned}
$$

$$
=0
$$

Simplarly, if derling with $h(x, y)=0$

Whig orthog? Recall:
(1) $D_{\vec{u}} f(a, b)=\nabla f(a, b) \cdot \vec{u}$
(2) if \vec{u} is prandel to the level set (a (a, b), then $D_{\vec{u}} t(a, b)=0$.
(1) $+(2) \Rightarrow$ the gradent of in orthanzl to all vactors paralled to the level set (i.e. Ahe gradient is arthogral to the kere) x A.

Ruk If $f(x, y, z)$ is a fanction taking 3 inputs sand giving 1 output.
The groph is a 3 -dimensioneal abject in $(3+1)$-dimensiona) space Its level sets are $(3-1)$-limensional obfents lassarll...) in 3 -dim space.

